Earnings Revenues

Earnings and revenues are critical metrics closely scrutinized by financial markets. The endpoint includes a specialized section allowing clients to seamlessly track their release.

Default calendar

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues?c={api_key}'
data = requests.get(url).json()
print(data)

Or using our package:

import tradingeconomics as te
te.login('your_api_key')
te.getEarnings()

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues?c=${api_key}`)
    console.log(response.data)
})()

Or using our package:

const te = require('tradingeconomics');
te.login('your_api_key');
data = te.getEarnings().then(function(data){
  console.log(data)     
});

Using Requests:

using (var httpClient = new HttpClient())
{
    using (var request = new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues?c=your_api_key"))
    {
        request.Headers.TryAddWithoutValidation("Upgrade-Insecure-Requests", "1");
        var response = await httpClient.SendAsync(request);
        if (response.IsSuccessStatusCode)
        {
            var content = await response.Content.ReadAsStringAsync(); 
            Console.WriteLine(content);
        }
    }
}

The response data format can be configured by appending the &f= parameter to the URL request.

/earnings-revenues

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2023-06-13AHT:LNAshtead0.840.8430626778072FY2023Q4Q42023-03-31United KingdomGBp124by_day_end6/20/2023 7:24:00 PM
2023-06-13MDI:CNMajor Drilling0.250.250.260.260.270.27184.97M184970000192.04M192040000189.98M189980000586712712FY2023Q4Q42023-03-31CanadaCAD121after_close6/17/2023 8:10:00 AM
2023-06-14ADBE:USAdobe Systems3.353.354.39B4390000000237552100000FY2023Q2Q22023-03-31United StatesUSD321after_close4/21/2023 6:57:00 PM

/earnings-revenues?f=json

[{"Date":"2023-09-04","Symbol":"TCOM:US","Name":"Trip.com","Actual":"5.11","ActualValue":5.11,"Forecast":"3.61","ForecastValue":3.61,"Previous":"-0.31","PreviousValue":-0.31,"Revenue":"11.25B","RevenueValue":11250000000.0,"RevenueForecast":"10.77B","RevenueForecastValue":10770000000.0,"RevenuePrevious":"4.01B","RevenuePreviousValue":4010000000.0,"MarketCapUSD":22641100000,"FiscalTag":"FY2023Q2","FiscalReference":"Q2","CalendarReference":"2023-06-30","Country":"China","Currency":"USD","Importance":2,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-09-27T13:36:00"},{"Date":"2023-09-04","Symbol":"ARI:SJ","Name":"African Rainbow Minerals","Actual":"19.37","ActualValue":19.37,"Forecast":"0.00","ForecastValue":0.0,"Previous":"39.15","PreviousValue":39.15,"Revenue":"6.72B","RevenueValue":6720000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"9.85B","RevenuePreviousValue":9850000000.0,"MarketCapUSD":1726756424,"FiscalTag":"FY2023H2","FiscalReference":"H2","CalendarReference":"2023-06-30","Country":"South Africa","Currency":"ZAR","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-09-22T12:51:00"},{"Date":"2023-09-05","Symbol":"AHT:LN","Name":"Ashtead","Actual":"1.07","ActualValue":1.07,"Forecast":"1.05","ForecastValue":1.05,"Previous":"0.94","PreviousValue":0.94,"Revenue":"2.70B","RevenueValue":2700000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"2.26B","RevenuePreviousValue":2260000000.0,"MarketCapUSD":26175459147,"FiscalTag":"FY2024Q1","FiscalReference":"Q1","CalendarReference":"2023-07-31","Country":"United Kingdom","Currency":"USD","Importance":2,"Session":16,"MarketRelease":"after_close","LastUpdate":"2023-09-22T12:42:00"}]

/earnings-revenues?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2023-09-04,TCOM:US,Trip.com,5.11,5.11,3.61,3.61,-0.31,-0.31,11.25B,11250000000,10.77B,10770000000,4.01B,4010000000,22641100000,FY2023Q2,Q2,2023-06-30,China,USD,2,21,after_close,9/27/2023 1:36:00 PM
2023-09-04,ARI:SJ,African Rainbow Minerals,19.37,19.37,0.00,0,39.15,39.15,6.72B,6720000000,,,9.85B,9850000000,1726756424,FY2023H2,H2,2023-06-30,South Africa,ZAR,1,24,by_day_end,9/22/2023 12:51:00 PM
2023-09-05,AHT:LN,Ashtead,1.07,1.07,1.05,1.05,0.94,0.94,2.70B,2700000000,,,2.26B,2260000000,26175459147,FY2024Q1,Q1,2023-07-31,United Kingdom,USD,2,16,after_close,9/22/2023 12:42:00 PM

/earnings-revenues?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>5.11</Actual>
<ActualValue>5.11</ActualValue>
<CalendarReference>2023-06-30</CalendarReference>
<Country>China</Country>
<Currency>USD</Currency>
<Date>2023-09-04</Date>
<FiscalReference>Q2</FiscalReference>
<FiscalTag>FY2023Q2</FiscalTag>
<Forecast>3.61</Forecast>
<ForecastValue>3.61</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-09-27T13:36:00</LastUpdate>
<MarketCapUSD>22641100000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Trip.com</Name>
<Previous>-0.31</Previous>
<PreviousValue>-0.31</PreviousValue>
<Revenue>11.25B</Revenue>
<RevenueForecast>10.77B</RevenueForecast>
<RevenueForecastValue>10770000000</RevenueForecastValue>
<RevenuePrevious>4.01B</RevenuePrevious>
<RevenuePreviousValue>4010000000</RevenuePreviousValue>
<RevenueValue>11250000000</RevenueValue>
<Session>21</Session>
<Symbol>TCOM:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>19.37</Actual>
<ActualValue>19.37</ActualValue>
<CalendarReference>2023-06-30</CalendarReference>
<Country>South Africa</Country>
<Currency>ZAR</Currency>
<Date>2023-09-04</Date>
<FiscalReference>H2</FiscalReference>
<FiscalTag>FY2023H2</FiscalTag>
<Forecast>0.00</Forecast>
<ForecastValue>0</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-09-22T12:51:00</LastUpdate>
<MarketCapUSD>1726756424</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>African Rainbow Minerals</Name>
<Previous>39.15</Previous>
<PreviousValue>39.15</PreviousValue>
<Revenue>6.72B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>9.85B</RevenuePrevious>
<RevenuePreviousValue>9850000000</RevenuePreviousValue>
<RevenueValue>6720000000</RevenueValue>
<Session>24</Session>
<Symbol>ARI:SJ</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>1.07</Actual>
<ActualValue>1.07</ActualValue>
<CalendarReference>2023-07-31</CalendarReference>
<Country>United Kingdom</Country>
<Currency>USD</Currency>
<Date>2023-09-05</Date>
<FiscalReference>Q1</FiscalReference>
<FiscalTag>FY2024Q1</FiscalTag>
<Forecast>1.05</Forecast>
<ForecastValue>1.05</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-09-22T12:42:00</LastUpdate>
<MarketCapUSD>26175459147</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Ashtead</Name>
<Previous>0.94</Previous>
<PreviousValue>0.94</PreviousValue>
<Revenue>2.70B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>2.26B</RevenuePrevious>
<RevenuePreviousValue>2260000000</RevenuePreviousValue>
<RevenueValue>2700000000</RevenueValue>
<Session>16</Session>
<Symbol>AHT:LN</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By date

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues?c={api_key}&d1=2017-01-01'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(initDate='2017-01-01')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues?c=${api_key}&d1=2017-01-01`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(start_date = '2017-01-01').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues?c=your_api_key&d1=2017-01-01");

With an end date:

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues?c={api_key}&d1=2017-01-01&d2=2017-12-31'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(initDate='2017-01-01', endDate='2017-12-31')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues?c=${api_key}&d1=2017-01-01&d2=2017-12-31`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(start_date = '2017-01-01', end_date = '2017-12-31').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues?c=your_api_key&d1=2017-01-01&d2=2017-12-31");

/earnings-revenues?d1=yyyy-mm-dd&d2=yyy-mm-dd

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2017-01-04RECN:USResources Connection0.180.180.190.190.160.16560700000FY2017Q3Q32016-12-31United StatesUSD121after_close12/11/2022 7:05:00 PM
2017-01-05WBA:USWalgreens Boots Alliance1.11.11.311.3126498900000FY2017Q2Q22016-12-31United StatesUSD313before_open12/11/2022 1:03:00 PM
2017-01-05STZ:USConstellation Brands1.961.961.71.71.191.1948122900000FY2017Q4Q42016-12-31United StatesUSD213before_open12/12/2022 3:25:00 AM

/earnings-revenues?d1=yyyy-mm-dd&d2=yyy-mm-dd?f=json

[{"Date":"2017-01-04","Symbol":"UNF:US","Name":"UniFirst","Actual":"1.38","ActualValue":1.38,"Forecast":"1.57","ForecastValue":1.57,"Previous":"1.78","PreviousValue":1.78,"Revenue":"386.11M","RevenueValue":386110000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"373.38M","RevenuePreviousValue":373380000.0,"MarketCapUSD":3033500000,"FiscalTag":"FY2017Q1","FiscalReference":"Q1","CalendarReference":"2016-11-30","Country":"United States","Currency":"USD","Importance":1,"Session":13,"MarketRelease":"before_open","LastUpdate":"2023-08-14T18:14:00"},{"Date":"2017-01-05","Symbol":"STZ:US","Name":"Constellation Brands","Actual":"1.96","ActualValue":1.96,"Forecast":"1.72","ForecastValue":1.72,"Previous":"1.42","PreviousValue":1.42,"Revenue":"1.81B","RevenueValue":1810000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"1.64B","RevenuePreviousValue":1640000000.0,"MarketCapUSD":45630900000,"FiscalTag":"FY2017Q3","FiscalReference":"Q3","CalendarReference":"2016-11-30","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-08-14T12:12:00"},{"Date":"2017-01-05","Symbol":"2884:TT","Name":"E Sun Financial Hldg","Actual":"0.18","ActualValue":0.18,"Forecast":"0.24","ForecastValue":0.24,"Previous":"0.18","PreviousValue":0.18,"Revenue":"12.22B","RevenueValue":12220000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"9.68B","RevenuePreviousValue":9680000000.0,"MarketCapUSD":11717835235,"FiscalTag":"FY2016Q4","FiscalReference":"Q4","CalendarReference":"2016-12-31","Country":"Taiwan","Currency":"TWD","Importance":2,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-08-14T12:36:00"}]

/earnings-revenues?d1=yyyy-mm-dd&d2=yyy-mm-dd?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2017-01-04,UNF:US,UniFirst,1.38,1.38,1.57,1.57,1.78,1.78,386.11M,386110000,,,373.38M,373380000,3033500000,FY2017Q1,Q1,2016-11-30,United States,USD,1,13,before_open,8/14/2023 6:14:00 PM
2017-01-05,STZ:US,Constellation Brands,1.96,1.96,1.72,1.72,1.42,1.42,1.81B,1810000000,,,1.64B,1640000000,45630900000,FY2017Q3,Q3,2016-11-30,United States,USD,3,21,after_close,8/14/2023 12:12:00 PM
2017-01-05,2884:TT,E Sun Financial Hldg,0.18,0.18,0.24,0.24,0.18,0.18,12.22B,12220000000,,,9.68B,9680000000,11717835235,FY2016Q4,Q4,2016-12-31,Taiwan,TWD,2,24,by_day_end,8/14/2023 12:36:00 PM

/earnings-revenues?d1=yyyy-mm-dd&d2=yyy-mm-dd?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>1.38</Actual>
<ActualValue>1.38</ActualValue>
<CalendarReference>2016-11-30</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2017-01-04</Date>
<FiscalReference>Q1</FiscalReference>
<FiscalTag>FY2017Q1</FiscalTag>
<Forecast>1.57</Forecast>
<ForecastValue>1.57</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-08-14T18:14:00</LastUpdate>
<MarketCapUSD>3033500000</MarketCapUSD>
<MarketRelease>before_open</MarketRelease>
<Name>UniFirst</Name>
<Previous>1.78</Previous>
<PreviousValue>1.78</PreviousValue>
<Revenue>386.11M</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>373.38M</RevenuePrevious>
<RevenuePreviousValue>373380000</RevenuePreviousValue>
<RevenueValue>386110000</RevenueValue>
<Session>13</Session>
<Symbol>UNF:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>1.96</Actual>
<ActualValue>1.96</ActualValue>
<CalendarReference>2016-11-30</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2017-01-05</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2017Q3</FiscalTag>
<Forecast>1.72</Forecast>
<ForecastValue>1.72</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T12:12:00</LastUpdate>
<MarketCapUSD>45630900000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Constellation Brands</Name>
<Previous>1.42</Previous>
<PreviousValue>1.42</PreviousValue>
<Revenue>1.81B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>1.64B</RevenuePrevious>
<RevenuePreviousValue>1640000000</RevenuePreviousValue>
<RevenueValue>1810000000</RevenueValue>
<Session>21</Session>
<Symbol>STZ:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.18</Actual>
<ActualValue>0.18</ActualValue>
<CalendarReference>2016-12-31</CalendarReference>
<Country>Taiwan</Country>
<Currency>TWD</Currency>
<Date>2017-01-05</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2016Q4</FiscalTag>
<Forecast>0.24</Forecast>
<ForecastValue>0.24</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-08-14T12:36:00</LastUpdate>
<MarketCapUSD>11717835235</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>E Sun Financial Hldg</Name>
<Previous>0.18</Previous>
<PreviousValue>0.18</PreviousValue>
<Revenue>12.22B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>9.68B</RevenuePrevious>
<RevenuePreviousValue>9680000000</RevenuePreviousValue>
<RevenueValue>12220000000</RevenueValue>
<Session>24</Session>
<Symbol>2884:TT</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By symbol and date

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c={api_key}&d1=2017-01-01'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(symbols = 'aapl:us', initDate='2017-01-01')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c=${api_key}&d1=2017-01-01`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(symbol = 'aapl:us', start_date = '2017-01-01').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c=your_api_key&d1=2017-01-01");

With an end date:

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c={api_key}&d1=2016-01-01&d2=2017-12-31'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(symbols = 'aapl:us', initDate='2016-01-01', endDate='2017-12-31')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c=${api_key}&d1=2016-01-01&d2=2017-12-31`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(symbol = 'aapl:us', start_date = '2016-01-01', end_date = '2017-12-31').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/symbol/aapl:us?c=your_api_key&d1=2016-01-01&d2=2017-12-31");

/earnings-revenues/symbol/{symbol}?d1=yyyy-mm-dd&d2=yyyy-mm-dd

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2016-01-26AAPL:USApple3.283.280.770.7775.87B7587000000074.60B746000000003093777000000FY2016Q1Q12015-12-31United StatesUSD321after_close12/12/2022 5:42:00 AM
2016-04-26AAPL:USApple1.91.90.580.5850.56B5056000000058.01B580100000003093777000000FY2016Q2Q22016-03-31United StatesUSD321after_close12/12/2022 5:42:00 AM
2016-07-26AAPL:USApple1.421.420.460.4642.36B4236000000049.61B496100000003093777000000FY2016Q3Q32016-06-30United StatesUSD321after_close12/12/2022 5:42:00 AM

/earnings-revenues/symbol/{symbol}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=json

[{"Date":"2016-01-26","Symbol":"AAPL:US","Name":"Apple","Actual":"0.82","ActualValue":0.82,"Forecast":"0.81","ForecastValue":0.81,"Previous":"0.77","PreviousValue":0.77,"Revenue":"75.87B","RevenueValue":75870000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"74.60B","RevenuePreviousValue":74600000000.0,"MarketCapUSD":2712851900000,"FiscalTag":"FY2016Q1","FiscalReference":"Q1","CalendarReference":"2015-12-31","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-08-14T11:41:00"},{"Date":"2016-04-26","Symbol":"AAPL:US","Name":"Apple","Actual":"0.48","ActualValue":0.48,"Forecast":"0.50","ForecastValue":0.5,"Previous":"0.58","PreviousValue":0.58,"Revenue":"50.56B","RevenueValue":50560000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"58.01B","RevenuePreviousValue":58010000000.0,"MarketCapUSD":2712851900000,"FiscalTag":"FY2016Q2","FiscalReference":"Q2","CalendarReference":"2016-03-31","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-08-14T11:41:00"},{"Date":"2016-07-26","Symbol":"AAPL:US","Name":"Apple","Actual":"0.36","ActualValue":0.36,"Forecast":"0.35","ForecastValue":0.35,"Previous":"0.46","PreviousValue":0.46,"Revenue":"42.36B","RevenueValue":42360000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"49.61B","RevenuePreviousValue":49610000000.0,"MarketCapUSD":2712851900000,"FiscalTag":"FY2016Q3","FiscalReference":"Q3","CalendarReference":"2016-06-30","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-08-14T11:41:00"}]

/earnings-revenues/symbol/{symbol}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2016-01-26,AAPL:US,Apple,0.82,0.82,0.81,0.81,0.77,0.77,75.87B,75870000000,,,74.60B,74600000000,2712851900000,FY2016Q1,Q1,2015-12-31,United States,USD,3,21,after_close,8/14/2023 11:41:00 AM
2016-04-26,AAPL:US,Apple,0.48,0.48,0.50,0.5,0.58,0.58,50.56B,50560000000,,,58.01B,58010000000,2712851900000,FY2016Q2,Q2,2016-03-31,United States,USD,3,21,after_close,8/14/2023 11:41:00 AM
2016-07-26,AAPL:US,Apple,0.36,0.36,0.35,0.35,0.46,0.46,42.36B,42360000000,,,49.61B,49610000000,2712851900000,FY2016Q3,Q3,2016-06-30,United States,USD,3,21,after_close,8/14/2023 11:41:00 AM

/earnings-revenues/symbol/{symbol}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>0.82</Actual>
<ActualValue>0.82</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-01-26</Date>
<FiscalReference>Q1</FiscalReference>
<FiscalTag>FY2016Q1</FiscalTag>
<Forecast>0.81</Forecast>
<ForecastValue>0.81</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T11:41:00</LastUpdate>
<MarketCapUSD>2712851900000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Apple</Name>
<Previous>0.77</Previous>
<PreviousValue>0.77</PreviousValue>
<Revenue>75.87B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>74.60B</RevenuePrevious>
<RevenuePreviousValue>74600000000</RevenuePreviousValue>
<RevenueValue>75870000000</RevenueValue>
<Session>21</Session>
<Symbol>AAPL:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.48</Actual>
<ActualValue>0.48</ActualValue>
<CalendarReference>2016-03-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-04-26</Date>
<FiscalReference>Q2</FiscalReference>
<FiscalTag>FY2016Q2</FiscalTag>
<Forecast>0.50</Forecast>
<ForecastValue>0.5</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T11:41:00</LastUpdate>
<MarketCapUSD>2712851900000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Apple</Name>
<Previous>0.58</Previous>
<PreviousValue>0.58</PreviousValue>
<Revenue>50.56B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>58.01B</RevenuePrevious>
<RevenuePreviousValue>58010000000</RevenuePreviousValue>
<RevenueValue>50560000000</RevenueValue>
<Session>21</Session>
<Symbol>AAPL:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.36</Actual>
<ActualValue>0.36</ActualValue>
<CalendarReference>2016-06-30</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-07-26</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2016Q3</FiscalTag>
<Forecast>0.35</Forecast>
<ForecastValue>0.35</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T11:41:00</LastUpdate>
<MarketCapUSD>2712851900000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Apple</Name>
<Previous>0.46</Previous>
<PreviousValue>0.46</PreviousValue>
<Revenue>42.36B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>49.61B</RevenuePrevious>
<RevenuePreviousValue>49610000000</RevenuePreviousValue>
<RevenueValue>42360000000</RevenueValue>
<Session>21</Session>
<Symbol>AAPL:US</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By country

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/country/mexico?c={api_key}'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(country = 'mexico')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/country/mexico?c=${api_key}`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(country = 'mexico').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/country/mexico?c=your_api_key");

/earnings-revenues/country/{country}

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2023-07-10TV:USGrupo Televisa Sab0.040.040.060.061.05B1050000000923.00M9230000002822900000FY2023Q2Q22023-06-30MexicoUSD121after_close7/7/2023 8:46:00 PM
2023-07-18ALFAA:MMAlfa0.990.9996.87B968700000002938204886FY2023Q2Q22023-06-30MexicoMXN124by_day_end5/26/2023 10:56:00 AM
2023-07-18ALPEKA:MMAlpek0.140.1456.40B564000000002171026546FY2023Q2Q22023-06-30MexicoMXN124by_day_end5/26/2023 10:55:00 AM

/earnings-revenues/country/{country}?f=json

[{"Date":"2023-10-18","Symbol":"ALFAA:MM","Name":"Alfa","Actual":"","ActualValue":null,"Forecast":"","ForecastValue":null,"Previous":"0.99","PreviousValue":0.99,"Revenue":"","RevenueValue":null,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"98.29B","RevenuePreviousValue":98290000000.0,"MarketCapUSD":3103881530,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-09-30","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-04-21T18:57:00"},{"Date":"2023-10-18","Symbol":"GRUMAB:MM","Name":"GRUMA","Actual":"","ActualValue":null,"Forecast":"4.36","ForecastValue":4.36,"Previous":"4.24","PreviousValue":4.24,"Revenue":"","RevenueValue":null,"RevenueForecast":"29.14B","RevenueForecastValue":29140000000.0,"RevenuePrevious":"1.44B","RevenuePreviousValue":1440000000.0,"MarketCapUSD":6238738122,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-09-30","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-09-27T18:02:00"},{"Date":"2023-10-19","Symbol":"GFNORTEO:MM","Name":"Banorte","Actual":"","ActualValue":null,"Forecast":"4.66","ForecastValue":4.66,"Previous":"4.00","PreviousValue":4.0,"Revenue":"","RevenueValue":null,"RevenueForecast":"33.66B","RevenueForecastValue":33659999999.999996,"RevenuePrevious":"49.11B","RevenuePreviousValue":49110000000.0,"MarketCapUSD":24273536951,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-09-30","Country":"Mexico","Currency":"MXN","Importance":2,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-09-26T13:41:00"},{"Date":"2023-10-19","Symbol":"ALPEKA:MM","Name":"Alpek","Actual":"","ActualValue":null,"Forecast":"0.46","ForecastValue":0.46,"Previous":"0.05","PreviousValue":0.05,"Revenue":"","RevenueValue":null,"RevenueForecast":"35.08B","RevenueForecastValue":35080000000.0,"RevenuePrevious":"59.75B","RevenuePreviousValue":59750000000.0,"MarketCapUSD":1764022385,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-09-30","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-09-26T13:41:00"},{"Date":"2023-10-19","Symbol":"KIMBERA:MM","Name":"Kimberly-Clark de M&eacute;xico","Actual":"","ActualValue":null,"Forecast":"0.58","ForecastValue":0.58,"Previous":"0.40","PreviousValue":0.4,"Revenue":"","RevenueValue":null,"RevenueForecast":"13.61B","RevenueForecastValue":13610000000.0,"RevenuePrevious":"12.79B","RevenuePreviousValue":12790000000.0,"MarketCapUSD":3161983285,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-09-30","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-09-26T13:41:00"}]

/earnings-revenues/country/{country}?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2023-10-18,ALFAA:MM,Alfa,,,,,0.99,0.99,,,,,98.29B,98290000000,3103881530,FY2023Q3,Q3,2023-09-30,Mexico,MXN,1,24,by_day_end,4/21/2023 6:57:00 PM
2023-10-18,GRUMAB:MM,GRUMA,,,4.36,4.36,4.24,4.24,,,29.14B,29140000000,1.44B,1440000000,6238738122,FY2023Q3,Q3,2023-09-30,Mexico,MXN,1,24,by_day_end,9/27/2023 6:02:00 PM
2023-10-19,GFNORTEO:MM,Banorte,,,4.66,4.66,4.00,4,,,33.66B,33660000000,49.11B,49110000000,24273536951,FY2023Q3,Q3,2023-09-30,Mexico,MXN,2,24,by_day_end,9/26/2023 1:41:00 PM
2023-10-19,ALPEKA:MM,Alpek,,,0.46,0.46,0.05,0.05,,,35.08B,35080000000,59.75B,59750000000,1764022385,FY2023Q3,Q3,2023-09-30,Mexico,MXN,1,24,by_day_end,9/26/2023 1:41:00 PM
2023-10-19,KIMBERA:MM,Kimberly-Clark de M&eacute;xico,,,0.58,0.58,0.40,0.4,,,13.61B,13610000000,12.79B,12790000000,3161983285,FY2023Q3,Q3,2023-09-30,Mexico,MXN,1,24,by_day_end,9/26/2023 1:41:00 PM

/earnings-revenues/country/{country}?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual/>
<ActualValue i:nil="true"/>
<CalendarReference>2023-09-30</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2023-10-18</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast/>
<ForecastValue i:nil="true"/>
<Importance>1</Importance>
<LastUpdate>2023-04-21T18:57:00</LastUpdate>
<MarketCapUSD>3103881530</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Alfa</Name>
<Previous>0.99</Previous>
<PreviousValue>0.99</PreviousValue>
<Revenue/>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>98.29B</RevenuePrevious>
<RevenuePreviousValue>98290000000</RevenuePreviousValue>
<RevenueValue i:nil="true"/>
<Session>24</Session>
<Symbol>ALFAA:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual/>
<ActualValue i:nil="true"/>
<CalendarReference>2023-09-30</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2023-10-18</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast>4.36</Forecast>
<ForecastValue>4.36</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-09-27T18:02:00</LastUpdate>
<MarketCapUSD>6238738122</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>GRUMA</Name>
<Previous>4.24</Previous>
<PreviousValue>4.24</PreviousValue>
<Revenue/>
<RevenueForecast>29.14B</RevenueForecast>
<RevenueForecastValue>29140000000</RevenueForecastValue>
<RevenuePrevious>1.44B</RevenuePrevious>
<RevenuePreviousValue>1440000000</RevenuePreviousValue>
<RevenueValue i:nil="true"/>
<Session>24</Session>
<Symbol>GRUMAB:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual/>
<ActualValue i:nil="true"/>
<CalendarReference>2023-09-30</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2023-10-19</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast>4.66</Forecast>
<ForecastValue>4.66</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-09-26T13:41:00</LastUpdate>
<MarketCapUSD>24273536951</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Banorte</Name>
<Previous>4.00</Previous>
<PreviousValue>4</PreviousValue>
<Revenue/>
<RevenueForecast>33.66B</RevenueForecast>
<RevenueForecastValue>33659999999.999996</RevenueForecastValue>
<RevenuePrevious>49.11B</RevenuePrevious>
<RevenuePreviousValue>49110000000</RevenuePreviousValue>
<RevenueValue i:nil="true"/>
<Session>24</Session>
<Symbol>GFNORTEO:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual/>
<ActualValue i:nil="true"/>
<CalendarReference>2023-09-30</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2023-10-19</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast>0.46</Forecast>
<ForecastValue>0.46</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-09-26T13:41:00</LastUpdate>
<MarketCapUSD>1764022385</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Alpek</Name>
<Previous>0.05</Previous>
<PreviousValue>0.05</PreviousValue>
<Revenue/>
<RevenueForecast>35.08B</RevenueForecast>
<RevenueForecastValue>35080000000</RevenueForecastValue>
<RevenuePrevious>59.75B</RevenuePrevious>
<RevenuePreviousValue>59750000000</RevenuePreviousValue>
<RevenueValue i:nil="true"/>
<Session>24</Session>
<Symbol>ALPEKA:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual/>
<ActualValue i:nil="true"/>
<CalendarReference>2023-09-30</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2023-10-19</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast>0.58</Forecast>
<ForecastValue>0.58</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-09-26T13:41:00</LastUpdate>
<MarketCapUSD>3161983285</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Kimberly-Clark de M&eacute;xico</Name>
<Previous>0.40</Previous>
<PreviousValue>0.4</PreviousValue>
<Revenue/>
<RevenueForecast>13.61B</RevenueForecast>
<RevenueForecastValue>13610000000</RevenueForecastValue>
<RevenuePrevious>12.79B</RevenuePrevious>
<RevenuePreviousValue>12790000000</RevenuePreviousValue>
<RevenueValue i:nil="true"/>
<Session>24</Session>
<Symbol>KIMBERA:MM</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By country and date

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/country/mexico?d1=2016-01-01&d2=2023-12-31&c={api_key}'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(country = 'mexico', initDate='2016-01-01', endDate='2023-12-31')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/country/mexico?d1=2016-01-01&d2=2023-12-31&c=${api_key}`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(country = 'mexico', start_date = '2016-01-01', end_date = '2023-12-31').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/country/mexico?d1=2016-01-01&d2=2023-12-31&c=your_api_key");

/earnings-revenues/country/{country}?d1=yyyy-mm-dd&d2=yyyy-mm-dd

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2016-02-23KOF:USFEMSA0.950.951.061.0617280900000FY2015Q4Q42015-12-31MexicoMXN121after_close12/11/2022 11:24:00 PM
2016-02-29SIM:USGrupo Simec Sab De Cv2.042.040.040.0417404900000FY2015Q4Q42015-12-31MexicoMXN121after_close12/12/2022 3:26:00 AM
2016-03-31AC:MMArca Continental4.804.80.810.8121.27B2127000000015.27B1527000000017871365894FY2016Q1Q12016-03-31MexicoMXN2by_day_end1/21/2023 10:47:00 AM

/earnings-revenues/country/{country}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=json

[{"Date":"2016-01-28","Symbol":"GFNORTEO:MM","Name":"Banorte","Actual":"1.78","ActualValue":1.78,"Forecast":"1.74","ForecastValue":1.74,"Previous":"1.38","PreviousValue":1.38,"Revenue":"22.68B","RevenueValue":22680000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"23.50B","RevenuePreviousValue":23500000000.0,"MarketCapUSD":24273536951,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"Mexico","Currency":"MXN","Importance":2,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-08-14T15:50:00"},{"Date":"2016-02-02","Symbol":"KIMBERA:MM","Name":"Kimberly-Clark de M&eacute;xico","Actual":"0.39","ActualValue":0.39,"Forecast":"0.36","ForecastValue":0.36,"Previous":"0.29","PreviousValue":0.29,"Revenue":"8.48B","RevenueValue":8480000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"7.64B","RevenuePreviousValue":7640000000.0,"MarketCapUSD":3161983285,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-08-14T16:22:00"},{"Date":"2016-02-04","Symbol":"CX:US","Name":"Cemex","Actual":"0.06","ActualValue":0.06,"Forecast":"-0.01","ForecastValue":-0.01,"Previous":"-0.12","PreviousValue":-0.12,"Revenue":"3.08B","RevenueValue":3080000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"3.46B","RevenuePreviousValue":3460000000.0,"MarketCapUSD":9778800000,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"Mexico","Currency":"USD","Importance":2,"Session":13,"MarketRelease":"before_open","LastUpdate":"2023-08-14T15:18:00"},{"Date":"2016-02-10","Symbol":"GMEXICOB:MM","Name":"Grupo M&eacute;xico","Actual":"0.02","ActualValue":0.02,"Forecast":"0.04","ForecastValue":0.04,"Previous":"0.05","PreviousValue":0.05,"Revenue":"1.99B","RevenueValue":1990000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"2.29B","RevenuePreviousValue":2290000000.0,"MarketCapUSD":36952525663,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"Mexico","Currency":"USD","Importance":3,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-08-14T15:51:00"},{"Date":"2016-02-10","Symbol":"ALFAA:MM","Name":"Alfa","Actual":"0.03","ActualValue":0.03,"Forecast":"0.29","ForecastValue":0.29,"Previous":"1.88","PreviousValue":1.88,"Revenue":"65.23B","RevenueValue":65230000000.000008,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"64.22B","RevenuePreviousValue":64220000000.0,"MarketCapUSD":3103881530,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"Mexico","Currency":"MXN","Importance":1,"Session":24,"MarketRelease":"by_day_end","LastUpdate":"2023-08-14T12:59:00"}]

/earnings-revenues/country/{country}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2016-01-28,GFNORTEO:MM,Banorte,1.78,1.78,1.74,1.74,1.38,1.38,22.68B,22680000000,,,23.50B,23500000000,24273536951,FY2015Q4,Q4,2015-12-31,Mexico,MXN,2,24,by_day_end,8/14/2023 3:50:00 PM
2016-02-02,KIMBERA:MM,Kimberly-Clark de M&eacute;xico,0.39,0.39,0.36,0.36,0.29,0.29,8.48B,8480000000,,,7.64B,7640000000,3161983285,FY2015Q4,Q4,2015-12-31,Mexico,MXN,1,24,by_day_end,8/14/2023 4:22:00 PM
2016-02-04,CX:US,Cemex,0.06,0.06,-0.01,-0.01,-0.12,-0.12,3.08B,3080000000,,,3.46B,3460000000,9778800000,FY2015Q4,Q4,2015-12-31,Mexico,USD,2,13,before_open,8/14/2023 3:18:00 PM
2016-02-10,GMEXICOB:MM,Grupo M&eacute;xico,0.02,0.02,0.04,0.04,0.05,0.05,1.99B,1990000000,,,2.29B,2290000000,36952525663,FY2015Q4,Q4,2015-12-31,Mexico,USD,3,24,by_day_end,8/14/2023 3:51:00 PM
2016-02-10,ALFAA:MM,Alfa,0.03,0.03,0.29,0.29,1.88,1.88,65.23B,65230000000,,,64.22B,64220000000,3103881530,FY2015Q4,Q4,2015-12-31,Mexico,MXN,1,24,by_day_end,8/14/2023 12:59:00 PM

/earnings-revenues/country/{country}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>1.78</Actual>
<ActualValue>1.78</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2016-01-28</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>1.74</Forecast>
<ForecastValue>1.74</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-08-14T15:50:00</LastUpdate>
<MarketCapUSD>24273536951</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Banorte</Name>
<Previous>1.38</Previous>
<PreviousValue>1.38</PreviousValue>
<Revenue>22.68B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>23.50B</RevenuePrevious>
<RevenuePreviousValue>23500000000</RevenuePreviousValue>
<RevenueValue>22680000000</RevenueValue>
<Session>24</Session>
<Symbol>GFNORTEO:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.39</Actual>
<ActualValue>0.39</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2016-02-02</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>0.36</Forecast>
<ForecastValue>0.36</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-08-14T16:22:00</LastUpdate>
<MarketCapUSD>3161983285</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Kimberly-Clark de M&eacute;xico</Name>
<Previous>0.29</Previous>
<PreviousValue>0.29</PreviousValue>
<Revenue>8.48B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>7.64B</RevenuePrevious>
<RevenuePreviousValue>7640000000</RevenuePreviousValue>
<RevenueValue>8480000000</RevenueValue>
<Session>24</Session>
<Symbol>KIMBERA:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.06</Actual>
<ActualValue>0.06</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>Mexico</Country>
<Currency>USD</Currency>
<Date>2016-02-04</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>-0.01</Forecast>
<ForecastValue>-0.01</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-08-14T15:18:00</LastUpdate>
<MarketCapUSD>9778800000</MarketCapUSD>
<MarketRelease>before_open</MarketRelease>
<Name>Cemex</Name>
<Previous>-0.12</Previous>
<PreviousValue>-0.12</PreviousValue>
<Revenue>3.08B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>3.46B</RevenuePrevious>
<RevenuePreviousValue>3460000000</RevenuePreviousValue>
<RevenueValue>3080000000</RevenueValue>
<Session>13</Session>
<Symbol>CX:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.02</Actual>
<ActualValue>0.02</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>Mexico</Country>
<Currency>USD</Currency>
<Date>2016-02-10</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>0.04</Forecast>
<ForecastValue>0.04</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T15:51:00</LastUpdate>
<MarketCapUSD>36952525663</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Grupo M&eacute;xico</Name>
<Previous>0.05</Previous>
<PreviousValue>0.05</PreviousValue>
<Revenue>1.99B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>2.29B</RevenuePrevious>
<RevenuePreviousValue>2290000000</RevenuePreviousValue>
<RevenueValue>1990000000</RevenueValue>
<Session>24</Session>
<Symbol>GMEXICOB:MM</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.03</Actual>
<ActualValue>0.03</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>Mexico</Country>
<Currency>MXN</Currency>
<Date>2016-02-10</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>0.29</Forecast>
<ForecastValue>0.29</ForecastValue>
<Importance>1</Importance>
<LastUpdate>2023-08-14T12:59:00</LastUpdate>
<MarketCapUSD>3103881530</MarketCapUSD>
<MarketRelease>by_day_end</MarketRelease>
<Name>Alfa</Name>
<Previous>1.88</Previous>
<PreviousValue>1.88</PreviousValue>
<Revenue>65.23B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>64.22B</RevenuePrevious>
<RevenuePreviousValue>64220000000</RevenuePreviousValue>
<RevenueValue>65230000000.000008</RevenueValue>
<Session>24</Session>
<Symbol>ALFAA:MM</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By index

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?c={api_key}'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(index = 'ndx:ind')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?c=${api_key}`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(index = 'ndx:ind').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?c=your_api_key");

/earnings-revenues/index/{index}

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2023-06-14ADBE:USAdobe Systems3.353.354.39B4390000000237552100000FY2023Q2Q22023-03-31United StatesUSD321after_close4/21/2023 6:57:00 PM
2023-06-15ADBE:USAdobe Systems3.913.913.793.793.353.354.82B48200000004.77B47700000004.39B4390000000237552100000FY2023Q2Q22023-03-31United StatesUSD321after_close6/15/2023 8:30:00 PM
2023-06-27WBA:USWalgreens Boots Alliance1.0011.081.0835.4B3540000000034.24B3424000000026498900000FY2023Q3Q32023-03-31United StatesUSD213before_open7/1/2023 12:10:00 AM

/earnings-revenues/index/{index}?f=json

[{"Date":"2023-09-05","Symbol":"ZS:US","Name":"Zscaler","Actual":"0.64","ActualValue":0.64,"Forecast":"0.49","ForecastValue":0.49,"Previous":"0.25","PreviousValue":0.25,"Revenue":"455M","RevenueValue":455000000.0,"RevenueForecast":"430.38M","RevenueForecastValue":430380000.0,"RevenuePrevious":"318.06M","RevenuePreviousValue":318060000.0,"MarketCapUSD":23519115193,"FiscalTag":"FY2023Q4","FiscalReference":"Q4","CalendarReference":"2023-07-31","Country":"United States","Currency":"USD","Importance":2,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-09-27T13:36:00"},{"Date":"2023-09-14","Symbol":"ADBE:US","Name":"Adobe Systems","Actual":"4.09","ActualValue":4.09,"Forecast":"3.97","ForecastValue":3.97,"Previous":"3.4","PreviousValue":3.4,"Revenue":"4.89B","RevenueValue":4890000000.0,"RevenueForecast":"4.87B","RevenueForecastValue":4870000000.0,"RevenuePrevious":"4.43B","RevenuePreviousValue":4430000000.0,"MarketCapUSD":235821800000,"FiscalTag":"FY2023Q3","FiscalReference":"Q3","CalendarReference":"2023-08-31","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-09-27T13:39:00"},{"Date":"2023-09-14","Symbol":"CPRT:US","Name":"Copart","Actual":"0.34","ActualValue":0.34,"Forecast":"0.32","ForecastValue":0.32,"Previous":"0.56","PreviousValue":0.56,"Revenue":"997.6M","RevenueValue":997600000.0,"RevenueForecast":"962.78M","RevenueForecastValue":962780000.0,"RevenuePrevious":"883.39M","RevenuePreviousValue":883390000.0,"MarketCapUSD":41585000000,"FiscalTag":"FY2023Q4","FiscalReference":"Q4","CalendarReference":"2023-07-31","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-09-27T13:39:00"}]

/earnings-revenues/index/{index}?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2023-09-05,ZS:US,Zscaler,0.64,0.64,0.49,0.49,0.25,0.25,455M,455000000,430.38M,430380000,318.06M,318060000,23519115193,FY2023Q4,Q4,2023-07-31,United States,USD,2,21,after_close,9/27/2023 1:36:00 PM
2023-09-14,ADBE:US,Adobe Systems,4.09,4.09,3.97,3.97,3.4,3.4,4.89B,4890000000,4.87B,4870000000,4.43B,4430000000,235821800000,FY2023Q3,Q3,2023-08-31,United States,USD,3,21,after_close,9/27/2023 1:39:00 PM
2023-09-14,CPRT:US,Copart,0.34,0.34,0.32,0.32,0.56,0.56,997.6M,997600000,962.78M,962780000,883.39M,883390000,41585000000,FY2023Q4,Q4,2023-07-31,United States,USD,3,21,after_close,9/27/2023 1:39:00 PM

/earnings-revenues/index/{index}?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>0.64</Actual>
<ActualValue>0.64</ActualValue>
<CalendarReference>2023-07-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2023-09-05</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2023Q4</FiscalTag>
<Forecast>0.49</Forecast>
<ForecastValue>0.49</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-09-27T13:36:00</LastUpdate>
<MarketCapUSD>23519115193</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Zscaler</Name>
<Previous>0.25</Previous>
<PreviousValue>0.25</PreviousValue>
<Revenue>455M</Revenue>
<RevenueForecast>430.38M</RevenueForecast>
<RevenueForecastValue>430380000</RevenueForecastValue>
<RevenuePrevious>318.06M</RevenuePrevious>
<RevenuePreviousValue>318060000</RevenuePreviousValue>
<RevenueValue>455000000</RevenueValue>
<Session>21</Session>
<Symbol>ZS:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>4.09</Actual>
<ActualValue>4.09</ActualValue>
<CalendarReference>2023-08-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2023-09-14</Date>
<FiscalReference>Q3</FiscalReference>
<FiscalTag>FY2023Q3</FiscalTag>
<Forecast>3.97</Forecast>
<ForecastValue>3.97</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-09-27T13:39:00</LastUpdate>
<MarketCapUSD>235821800000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Adobe Systems</Name>
<Previous>3.4</Previous>
<PreviousValue>3.4</PreviousValue>
<Revenue>4.89B</Revenue>
<RevenueForecast>4.87B</RevenueForecast>
<RevenueForecastValue>4870000000</RevenueForecastValue>
<RevenuePrevious>4.43B</RevenuePrevious>
<RevenuePreviousValue>4430000000</RevenuePreviousValue>
<RevenueValue>4890000000</RevenueValue>
<Session>21</Session>
<Symbol>ADBE:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.34</Actual>
<ActualValue>0.34</ActualValue>
<CalendarReference>2023-07-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2023-09-14</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2023Q4</FiscalTag>
<Forecast>0.32</Forecast>
<ForecastValue>0.32</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-09-27T13:39:00</LastUpdate>
<MarketCapUSD>41585000000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>Copart</Name>
<Previous>0.56</Previous>
<PreviousValue>0.56</PreviousValue>
<Revenue>997.6M</Revenue>
<RevenueForecast>962.78M</RevenueForecast>
<RevenueForecastValue>962780000</RevenueForecastValue>
<RevenuePrevious>883.39M</RevenuePrevious>
<RevenuePreviousValue>883390000</RevenuePreviousValue>
<RevenueValue>997600000</RevenueValue>
<Session>21</Session>
<Symbol>CPRT:US</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

By index and date

Using Requests:

import requests
api_key = 'YOUR_API_KEY'
url = f'https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?d1=2016-01-01&d2=2023-12-31&c={api_key}'
data = requests.get(url).json()
print(data)

Or using our package:

te.getEarnings(index = 'ndx:ind', initDate='2016-01-01', endDate='2023-12-31')

Using Requests:

const axios = require('axios');
(async () => {
    const api_key = 'YOUR_API_KEY'
    const response = await axios.get(`https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?d1=2016-01-01&d2=2023-12-31&c=${api_key}`)
    console.log(response.data)
})()

Or using our package:

data = te.getEarnings(index = 'ndx:ind', start_date = '2016-01-01', end_date = '2023-12-31').then(function(data){
  console.log(data)     
});

Using Requests:

new HttpRequestMessage(new HttpMethod("GET"), "https://api.tradingeconomics.com/earnings-revenues/index/ndx:ind?d1=2016-01-01&d2=2023-12-31&c=your_api_key");

/earnings-revenues/index/{index}?d1=yyyy-mm-dd&d2=yyyy-mm-dd

DateSymbolNameActualActualValueForecastForecastValuePreviousPreviousValueRevenueRevenueValueRevenueForecastRevenueForecastValueRevenuePreviousRevenuePreviousValueMarketCapUSDFiscalTagFiscalReferenceCalendarReferenceCountryCurrencyImportanceSessionMarketReleaseLastUpdate
2016-01-07WBA:USWalgreens Boots Alliance1.031.031.181.1826498900000FY2016Q2Q22015-12-31United StatesUSD321after_close12/11/2022 1:03:00 PM
2016-01-12CSX:USCSX0.480.480.160.1669049300000FY2015Q4Q42015-12-31United StatesUSD321after_close12/12/2022 1:16:00 AM
2016-01-14INTC:USIntel0.740.740.740.74139970900000FY2015Q4Q42015-12-31United StatesUSD321after_close12/11/2022 8:32:00 PM

/earnings-revenues/index/{index}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=json

[{"Date":"2016-01-07","Symbol":"WBA:US","Name":"Walgreens Boots Alliance","Actual":"1.03","ActualValue":1.03,"Forecast":"0.96","ForecastValue":0.96,"Previous":"","PreviousValue":null,"Revenue":"29.03B","RevenueValue":29030000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"","RevenuePreviousValue":null,"MarketCapUSD":19017600000,"FiscalTag":"FY2016Q1","FiscalReference":"Q1","CalendarReference":"2015-11-30","Country":"United States","Currency":"USD","Importance":2,"Session":13,"MarketRelease":"before_open","LastUpdate":"2023-08-14T12:16:00"},{"Date":"2016-01-12","Symbol":"CSX:US","Name":"CSX","Actual":"0.16","ActualValue":0.16,"Forecast":"0.15","ForecastValue":0.15,"Previous":"0.16","PreviousValue":0.16,"Revenue":"","RevenueValue":null,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"","RevenuePreviousValue":null,"MarketCapUSD":60972400000,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"United States","Currency":"USD","Importance":3,"Session":21,"MarketRelease":"after_close","LastUpdate":"2023-08-14T11:50:00"},{"Date":"2016-01-14","Symbol":"INTC:US","Name":"Intel","Actual":"0.74","ActualValue":0.74,"Forecast":"0.63","ForecastValue":0.63,"Previous":"0.74","PreviousValue":0.74,"Revenue":"14.91B","RevenueValue":14910000000.0,"RevenueForecast":"","RevenueForecastValue":null,"RevenuePrevious":"14.72B","RevenuePreviousValue":14720000000.0,"MarketCapUSD":148799600000,"FiscalTag":"FY2015Q4","FiscalReference":"Q4","CalendarReference":"2015-12-31","Country":"United States","Currency":"USD","Importance":3,"Session":13,"MarketRelease":"before_open","LastUpdate":"2023-08-14T12:00:00"}]

/earnings-revenues/index/{index}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=csv

Date,Symbol,Name,Actual,ActualValue,Forecast,ForecastValue,Previous,PreviousValue,Revenue,RevenueValue,RevenueForecast,RevenueForecastValue,RevenuePrevious,RevenuePreviousValue,MarketCapUSD,FiscalTag,FiscalReference,CalendarReference,Country,Currency,Importance,Session,MarketRelease,LastUpdate
2016-01-07,WBA:US,Walgreens Boots Alliance,1.03,1.03,0.96,0.96,,,29.03B,29030000000,,,,,19017600000,FY2016Q1,Q1,2015-11-30,United States,USD,2,13,before_open,8/14/2023 12:16:00 PM
2016-01-12,CSX:US,CSX,0.16,0.16,0.15,0.15,0.16,0.16,,,,,,,60972400000,FY2015Q4,Q4,2015-12-31,United States,USD,3,21,after_close,8/14/2023 11:50:00 AM
2016-01-14,INTC:US,Intel,0.74,0.74,0.63,0.63,0.74,0.74,14.91B,14910000000,,,14.72B,14720000000,148799600000,FY2015Q4,Q4,2015-12-31,United States,USD,3,13,before_open,8/14/2023 12:00:00 PM

/earnings-revenues/index/{index}?d1=yyyy-mm-dd&d2=yyyy-mm-dd?f=xml

<ArrayOfMarkets.EarningsRevenuesItem xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/APILib.DB">
<Markets.EarningsRevenuesItem>
<Actual>1.03</Actual>
<ActualValue>1.03</ActualValue>
<CalendarReference>2015-11-30</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-01-07</Date>
<FiscalReference>Q1</FiscalReference>
<FiscalTag>FY2016Q1</FiscalTag>
<Forecast>0.96</Forecast>
<ForecastValue>0.96</ForecastValue>
<Importance>2</Importance>
<LastUpdate>2023-08-14T12:16:00</LastUpdate>
<MarketCapUSD>19017600000</MarketCapUSD>
<MarketRelease>before_open</MarketRelease>
<Name>Walgreens Boots Alliance</Name>
<Previous/>
<PreviousValue i:nil="true"/>
<Revenue>29.03B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious/>
<RevenuePreviousValue i:nil="true"/>
<RevenueValue>29030000000</RevenueValue>
<Session>13</Session>
<Symbol>WBA:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.16</Actual>
<ActualValue>0.16</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-01-12</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>0.15</Forecast>
<ForecastValue>0.15</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T11:50:00</LastUpdate>
<MarketCapUSD>60972400000</MarketCapUSD>
<MarketRelease>after_close</MarketRelease>
<Name>CSX</Name>
<Previous>0.16</Previous>
<PreviousValue>0.16</PreviousValue>
<Revenue/>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious/>
<RevenuePreviousValue i:nil="true"/>
<RevenueValue i:nil="true"/>
<Session>21</Session>
<Symbol>CSX:US</Symbol>
</Markets.EarningsRevenuesItem>
<Markets.EarningsRevenuesItem>
<Actual>0.74</Actual>
<ActualValue>0.74</ActualValue>
<CalendarReference>2015-12-31</CalendarReference>
<Country>United States</Country>
<Currency>USD</Currency>
<Date>2016-01-14</Date>
<FiscalReference>Q4</FiscalReference>
<FiscalTag>FY2015Q4</FiscalTag>
<Forecast>0.63</Forecast>
<ForecastValue>0.63</ForecastValue>
<Importance>3</Importance>
<LastUpdate>2023-08-14T12:00:00</LastUpdate>
<MarketCapUSD>148799600000</MarketCapUSD>
<MarketRelease>before_open</MarketRelease>
<Name>Intel</Name>
<Previous>0.74</Previous>
<PreviousValue>0.74</PreviousValue>
<Revenue>14.91B</Revenue>
<RevenueForecast/>
<RevenueForecastValue i:nil="true"/>
<RevenuePrevious>14.72B</RevenuePrevious>
<RevenuePreviousValue>14720000000</RevenuePreviousValue>
<RevenueValue>14910000000</RevenueValue>
<Session>13</Session>
<Symbol>INTC:US</Symbol>
</Markets.EarningsRevenuesItem>
</ArrayOfMarkets.EarningsRevenuesItem>

Response fields

FieldTypeDescriptionExample
DatestringRelease date in UTC“2023-03-15”
SymbolstringUnique symbol used by Trading Economics“ADBE:US”
NamestringCompany name“Adobe Systems”
ActualstringEarnings per share“3.80”
ActualValuenumberEarnings per share value3.80
ForecaststringAverage forecast among a representative group of analysts“3.68”
ForecastValuenumberAverage numeric forecast among a representative group of analysts3.68
PreviousstringPreviously released value“3.37”
PreviousValuenumberPreviously released numeric value3.37
RevenuestringRevenue value“4.66B”
RevenueValuenumberRevenue numeric value4660000000
RevenueForecaststringForecast revenue value“4.62B”
RevenueForecastValuenumberForecast revenue numeric value4620000000
RevenuePreviousstringPrevious revenue value“4.26B”
RevenuePreviousValuenumberPrevious revenue numeric value4260000000
MarketCapUSDnumberMarket cap in US dollar173177600000
FiscalTagstringFiscal year and quarter“FY2023Q1”
FiscalReferencestringFiscal year and quarter in different format“Q1”
CalendarReferencestringCalendar quarter for the release“2022-12-31”
CountrystringCountry name“United States”
CurrencystringCurrency“USD”
Importancenumber1 = low, 2 = medium, 3 = high3
SessionnumberExpected earnings release hour21
marketReleasestringRelease type: after_close, before_open, by_day_end“after_close”
LastUpdatestringTime when new data was inserted or changed“2023-03-18T16:15:00”